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Abstract

A numerical investigation of the flow structure and the fluid
forces associated with a sphere rolling down an inclined plane
with no constrains is undertaken. The Reynolds numbers con-
sidered are in the range 18− 315. The study shows that the
mirror symmetry of vortex shedding is broken as the Reynolds
number is increased, leading to a side-to-side motion of the
sphere.

Introduction

At low Reynolds numbers, the flow around a stationary sphere
placed in an unbounded flow remains steady and attached until
Re ≈ 20 [2]. When the flow separates, the recirculation zone
in the wake remains symmetric about the streamwise centreline
of the sphere [3]. At Re ≈ 210, the flow undergoes a transition
to steady asymmetric flow [4, 5] which is characterised by the
development of a two-tailed wake. At 270 < Re < 280, a peri-
odic undulation in the asymmetric wake is observed, which trig-
gers the onset to unsteady flow via a supercritical Hopf bifurca-
tion [3, 4, 6]. As Re increases, fully formed vortices shed into
the wake of the sphere that take the form of vortex ‘hairpins’.
The flow also maintains a planar symmetry until Re > 350 [7].

Amongst the studies conducted on rotating spheres near bound-
aries are Zeng et al.’s [8] and Cherukat & McLaughlin’s [10]
works (the latter being restricted to the Stokes regime), where
a sphere is moving near a wall (but not on it) at a gap of the
order of 0.75 sphere diameters or greater. Their results indicate
that, in general, any observed rotation has been in the prograde
direction and that the free rotation has little effect on the lift
and drag forces. The transition to the two-tailed wake occurs
at lower Re than for that of an isolated sphere, and this tran-
sition also depends on the distance to the wall. The unsteady
flow takes the form of hairpin vortices and loops in the wake.
Zeng et al. [8] describe that the wall has two effects on the flow
structure: the first is a viscous one acting to delay the transition
to unsteady flow, and the second tends to stabilise the flow and
is due to the asymmetry in the wake. Verekar & Arakeri [11]
have undertaken a study where a sphere is freely rolling on an
inclined plane, focusing mainly on the physics behind the flow
features and the forces acting on the sphere. However, an analy-
sis of the wake transitions and induced motion of the body were
not investigated.

More recent studies have looked at the stability of the wake and
the dynamics of the flow around spheres translating and rotat-
ing very close to a wall [1,9,12] at moderate Reynolds numbers
(of order 101−3, covering both steady and unsteady regimes).
These studies show that the wall and the imposed body rotation
have a great impact on the wake structures and instabilities. For
α > 0, where α = aω/U is the non-dimensional rotation rate of
the body, a compact zone of recirculating fluid is created and
the unsteady flow is marked by the shedding of hairpin vortices.
For α < 0, a stream-wise vortex pair appears in the wake and as
Re is increased, the wake undergoes a transition to an antisym-

metric mode.

In this study, we look at the fluid-structure interaction of an
unconstrained sphere rolling on an inclined surface, focusing
mainly on the body forces, the movement of the sphere and the
development and structure of the flow. The range of Reynolds
numbers considered is 18–315. As a reference, some results of
the rolling sphere at α = 1 are also included.

Problem Definition and Methodology
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Figure 1: Two-dimensional schematic of the configuration.

The rolling sphere setup is illustrated in figure 1: U and ω rep-
resent the translational and angular velocities of the sphere re-
spectively, T the torque, θ the inclination angle of the wall, L
and D the lift and drag forces, N and R the components of the re-
action force and mg the body’s weight. The frame of reference
is attached to the centre of the sphere here.

This problem requires a coupling between the equations of mo-
tions of the fluid (the continuity and Navier–Stokes equations)
and the equation of motion of the sphere (Newton’s second law).

Fluid equations

Let u(x, y, z, t) = (u, v, w) represent the velocity of the fluid. In
the case of an incompressible flow, the continuity equation is:

∇ ·u = 0, (1)

and the Navier–Stokes equation in an accelerating frame is:

∂u
∂t

+u ·∇u =− 1
ρ f

∇P+ν∇2u− dus
dt

, (2)

where us(x, y, z, t) = (us, vs, 0) is the velocity of the sphere, ρ f
and ν the density and viscosity of the fluid respectively, and P
the pressure field.

Body acceleration equations



The torque balance equation:

∑τττ =
dL
dt

(3)

T+ r∧FR =
2
5

ma2ωωω (4)

combined with a no-slip condition at the point of contact be-
tween the sphere and the wall allows the reaction force R to be
expressed in terms of the sphere’s angular velocity ωωω.

The x– and y–components of the sphere’s acceleration a can
thus be expressed using Newton’s second law:

ma = m
dus
dt

= ∑F, (5)

where ∑F is the sum of all forces exerted on the sphere, giving

ẍ =
5
7

[(
1− 1

β

)
gsinθ− 3Dx

4πa3ρs
− 3Ty

4πa4ρs

]
(6)

and

ÿ =
15

28πa3ρs

(
Dy +

Tx

a

)
(7)

where β = ρs/ρ f is the ratio of the body density to the density
of the fluid. The z-component of the acceleration, assuming
the body stays in contact with the surface and does not lift-off,
gives the following condition on the normal and lift forces: N =
m∗gcosθ−L where m∗ = 4/3πa3(ρs−ρ f ).

Numerical formulation and validation

The code used for the numerical simulations uses a spectral ele-
ment approach with iterative time-splitting. The solver has been
tested, validated and used extensively in the past for similar
problems and geometries [5,12,13,14,15,16], the main addition
here being that the dynamics of the flow and the motion of the
sphere are solved in a fully coupled way.

Figure 2: Left: two-dimensional mesh configuration in the
vicinity of the sphere. Right: three-dimensional axisymmetric
geometry and mesh.

The two-dimensional mesh, which is a of a finer resolution than
the one that has been used and tested for convergence by Stewart
et al. in the past [1], has an increased resolution of the macro-
elements near the sphere region and can be seen on the left of
figure 2. For the three-dimensional space, shown on the right
of figure 2, the two-dimensional mesh is expanded into 192
Fourier planes around the symmetry axis located perpendicular
to the bottom wall through the centre of the sphere.

In this study, the inclination angle of the wall θ and the den-
sity ratio β are both fixed at 5.8◦ and 2.2, respectively, and the
viscosity of the fluid ν (or, equivalently, the Reynolds number)
is varied throughout. The majority of the presented results are
scaled for simplicity and clarity.

Results

Velocity of the sphere and frequency of oscillations

At low Reynolds numbers, the wake is steady and is charac-
terised by the formation of two streamwise vortices, compara-
ble to the twin-tailed structure that is observed behind a sphere
in an unbounded flow. This effect can be seen on figure 3 at
Re = 133, where a top view of the cross-stream vorticity isosur-
face is visualised (the sphere is located at the far left). The red
and blue correspond to clockwise and anti-clockwise rotations
respectively. The sphere in the final state is rolling along the
wall at a constant terminal velocity.

When the flow becomes unsteady past Re ≈ 160, hairpin vor-
tices start to shed periodically initially and the structure main-
tains a plane of symmetry that passes through the centre of the
sphere perpendicular to the wall (figure 3 at Re = 186). The
fluctuating forces affiliated with this state cause the body to de-
velop a regular transverse oscillation, however, as the Reynolds
number increases, the shedding becomes unstructured and ir-
regular (figure 3 at Re = 223) eventually causing the mirror
symmetry in the wake to break and large scale oscillations of
the body to occur (figure 6 at Re = 267).

Overall, there is an increase in the mean velocity of the sphere
with the Reynolds number (figure 4, top), and the Strouhal num-
ber St = 2a f/U , where f is the frequency of oscillation, re-
mains constrained between 0.08 and 0.14 (figure 4, bottom).
The latter is compared to the one obtained from the reference
case where the sphere is rolling at a constant scaled velocity
U∗ = 1 and rotation rate α = 1 in red ( ), and the results show
overall good agreement with the slight deviation at Re = 250
and 300 due to the irregularity of the oscillations when the body
is free to roll.

Trajectory of the sphere and corresponding flow structure

Figures 5 and 6 show the cross-stream component of the
sphere’s position in time at Re = 160 (around the transition
to unsteady flow) and 267, respectively. The asymmetrical
wake causes a deviation of the body across the y-axis. At low
Reynolds numbers (below and around the transition), strong
wake vortices shed initially very close to the sphere’s surface,
causing immediate strong oscillations of the body. The length of
the wake then increases and the shedding grows weaker, leading
to either a steady state (figure 3 at Re = 133) or a more sparse
shedding (figure 5).

At higher Reynolds number, a transverse undulation of the wake
becomes apparent and significant. The combined effect with the
shedding of vortices causes the body’s trajectory to exhibit very
large and irregular deviations and oscillations. A visualisation
of the flow and the wake undulations can clearly be seen on
figures 6 and 7.

Force measurements

The mean drag and lift force coefficients, defined by:

CD =

(
2

πa2ρ f U
2

)
D and CL =

(
2

πa2ρ f U
2

)
L, (8)

are consistent with the ones obtained through the reference case
simulations (figure 8). The drag sees an overall decrease with
the Reynolds number, and the lift a slight decrease until transi-
tion, after the which it slowly starts to increase again.

Conclusions

In the range of Reynolds numbers considered in this study, good



0

0.6

1.2
Re = 133

U∗

0

0.6

1.2
Re = 186

U∗

0 100 200 300
0

0.6

1.2
Re = 223

t∗

U∗

Figure 3: Variation of the velocity amplitude of the sphere in
time. The images show the isosurfaces of the cross-stream vor-
ticity field at the final state (taken here at t∗ = 300) viewed from
the top. The velocity is scaled by U and the time by d/U .

qualitative agreement has been found between the reference
case of a fixed rolling sphere at α = 1 and the freely rolling
sphere. The Strouhal number is comprised between 0.08 and
0.14, the mean drag coefficient decreases as the Reynolds num-
ber increases and the lift coefficient decreases then increases
after the flow transitions. Altogether, the variations in the drag
and lift coefficients between Re = 18 and 315 are of the order
of 80% and 20%, respectively.

Below the transition to unsteady flow, the velocity of the body
reaches a constant terminal state and the body rolls in a straight
line often deviated from the y= 0 axis defined from the sphere’s
initial position. This is due to the fact that in the initial develop-
ment of the flow, the sudden acceleration of the sphere causes a
strong and compact shedding vortices which quickly subsides,
thus altering the movement of the sphere. Past the transition to
vortex shedding, the velocity and movement of the sphere be-
come affected by the oscillating body forces. The developed
response is, for Reynolds numbers close to the transition, a pe-
riodic oscillating one, and for higher Reynolds numbers an ir-
regular and unstructured one characterised by large and asym-
metrical oscillations. In general, the mean velocity of the sphere
grows with the Reynolds number.
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